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PROOF OF SPRINGER'S HYPOTHESIS 

BY 

D. K A Z H D A N  

ABSTRACT 

Let G be a reductive group over a finite field k of a characteristic p. 

H : Gk ~ Aut U is an irreducible representation of G in "a general position". 

Springer formulated a conjecture about values of the character of FI on 
unipotent elements. This conjecture is proved in the article, 

The present paper is devoted to the description of a class of complex 

representations of reductive groups over finite fields. The question of the 

description of representations of such groups was treated already in the 

nineteenth century. Namely, Frobenius described all characters of irreducible 

representations of SL(2, Fq), the group of 2 • 2 matrices of determinant 1 over 

Fq. Then in the beginning of the 1950's the irreducible characters of GL(3, Fq) 

and GL(4, Fq) were described and in 1955 Green described all irreducible 

characters of GL(n, F~), any n. It turned out that the values of those characters 

on semisimple elements can be easily written down, but the most complicated 

task is to give their values for unipotent elements. The functions which give 

those values (for GL(n, Fq)) are Green polynomials. Moreover the larger part of 

representations was easily partitioned into series (to every conjugacy class of tori 

there corresponded a series) and values of characters of one series on unipotent 

elements did not depend on a particular choice of a representation inside this 

series. 

In 1968 Srinivasan described irreducible characters of Sp(4, Fq). It turned out 

that also in this case the larger part of representations falls in series, each series 

corresponds to a conjugacy class of tori, and for representations of one series the 

restriction of their characters to unipotent elements does not depend on the 

choice of character. 

In consequence the hypothesis was formulated that for any connected 

reductive group G over finite field F, and for any maximal torus T of G, there 

exists a series of irreducible representations of G parameterized by T, and that 
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the restriction of all characters of a fixed series to unipotent elements coincides 

and is given by a function OG(T, ) which depends only on the torus 7". 

In 1971, T. A. Springer [5] proposed a formula for the function Oo(T, u), u 
varying over the set V of unipotent elements of G. He proved recently that for 

nonconjugate tori T and T', the restrictions of O6(T, ) and OG(T', ) to V are 

orthogonal and that Eo~v lOt(T, v)l 2 : I VI" I Wrl, where Wr is the Weyl group 

of T [6]. 
In the present paper we show that Springer's hypothesis is correct in the case 

when the characteristic p of Fq is big enough. Namely, for any character 0 of 

torus T we construct a continuation QG(T; O) of Oo(T) to the whole group G 

and prove that QG(T; O) is a virtual character of G. It follows from Springer's 

results on the functions QG (T) that Eg ~ [ O~ (T; 0 ; g)[2 = [ G I" I Wr (0)1, where 

Wr(O) is the stabilizer of 0 in WT. Hence O~(T; O) is an irreducible character 

for 0 in general position (that is, when WT(O)= 1). 

Quite recently, Deligne and Lusztig constructed for any character 0 of a 

maximal torus T of G the action of G on an algebraic variety Xr furnished with 

a locally constant 6tale sheaf .~. (Their construction is a generalization of 

Drinfelds' work, done for SL(2).) This data gives rise to the representation of G 

in the Euler characteristic of ~-0, which is denoted R ~-. Deligne and Lusztig [2] 

have shown that 

~, fWrR~(g)12=lGl'[Wr(O)J. 
g~c 

Our results imply immediately that 

TrR~-(g) = +--Oc(T; O;g). 

I want to express my gratitude to I. Bernstein, P. Deligne, and B. Weisfeiler 

who helped me to do the present work. 

Let G be a connected reductive Lie group over k = Fq, G be the set of its 

k-points, g be the Lie algebra of G and g be the set of its k-points. 

Let us denote by V C G the variety of unipotent elements in G and by • Cg 

the variety of nilpotent elements in g. Let further U C G be a maximal unipotent 

k-subgroup in G and tt C g be its Lie algebra. 

The following assumption is made throughout. 

ASSUMPTZON (*). The maps ln: g--*w and exp:m---~ V are well defined and 

the Campbell-Hausdorff formula holds for them. 

Under this assumption the Killing form of g and its restrictions to all proper 

reductive subalgebras are nondegenerate. 



274 D. KAZHDAN Israel J. Math. 

Denote  by u' the space of linear functionals on u. The group U acts naturally 

upon tt and u'. For A E u' let us denote by B~ ( , )  the bilinear al ternate form on u 

given by 

BA(Ul, U2) = /~ [Ul, U2]. 

LEMMA 1. There exists a subalgebra h ~ Cu which is a maximal isotropic 

subspace for BA. Any  such subalgebra is called subordinate to A. 

PROOF. Let a = Uo D U~ D �9 �9 �9 D UN = 0 be a series of normal subalgebras such 

that dim u,/u,+~ = 1 for 0 =< i _-< N - l. Denote  by h ~ C u~ the n ull-subspace of the 

restriction of Ba to u~ and set h* = (.J ,=oh;'. h a is subordinate to ,~. 

Let H a =  exph  a and denote by A the function on H ~ given by A ( h ) =  

A(ln h), h E H a. We shall call H ~ a subordinate subgroup to ,L According to 

Assumption (*), H ~ is a subgroup of O and A: H"  ~/7: ,  is a homomorph i sm into 

the additive subgroup of k. Choose a nontrivial additive character ~b : k+ --* C* of 

k. Set ~ba =4J~  *. Then ~ is a character of H *. Consider the 

of U given by Ha = Ind,~*(r Let Xa(u) = detTr(l-Ia(u)),  representation Ha 

u E U .  

- d i m ~  PROPOSITION 1. XA(U) = q 2 ~ +(~(In  U)). 

PROOF. Let Xa (w) = X, (exp w), w E u. By definition X, (w) = 

[H" ]  - '  �9 E ,~uaa(w=) ,  where aa = O(A(w)) for w ~ h* and aa(w) = 0 otherwise. 

Denote  by L ~ the affine subspace of u' consisting of those functionals ~,/h ~ = )t. 
It is clear that 

Therefore  

a~,(w) = [L~] -~ v ~  ~ ~O(v(w)). 

1 
X . ( w ) = [ H . I I L .  ] . ~  O(v(w")) 

v E L  x 

1 
- [H*I[L"] : ~  r 

LEMMA 2. The group H, preserves L* and acts transitively on it. 

PROOF. The  first assertion is evident. Denote  by h~ Cu the null-subspace of 

B, and by H~ C U the stabilizer of )c By (*), h~ = In (H i ) .  Let us consider the 

map H~ \ H  * ~ L~ given by o-(h) = A h. 
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It follows from h~ = In H~ that tr is injective. Since H~\H~ ~ L* is the affine 

space of dimension dim 11,/2, the lemma is proved. 

COROLLARY. H, acts transitively on L~. 

PROOF. Since Galois cohomology with coefficients in a connected unipotent 

group is trivial, our corollary follows by standard arguments from Lemma 2. 

We can now rewrite the formula for X~ : 

1 - dim ~ 
x (w) = ,/,(,4w))= q 2 .EllAE 

Proposition 1 is proved. 

PROPOSITION 2. a) The representation I-1~ does not depend on the choice o fh  ~. 

b) II~ is irreducible. 

c) The representations H, and II~, are equivalent iff f~, = ~ . .  
d) dim II, = [tl,  ],n. 

e) Any  irreducible representation of U is equivalent to one of H,, A E u'. 

PROOF. a) Since any representation of a finite group is completely deter- 

mined by its character, our assertion follows immediately from Proposition 1. 

b) To prove b), we should check the equality 

a E Ix (.)l :=1. 

This later equality also follows immediately from Proposition 1. 

c) Proved by the same argument as a). 

d) Evident. 

e) It follows from d) that E~,o(dimH~) 2 = [u'] = [u] = [U], where the sum is 

taken over the subset u~, C u' of representatives of orbits. Since representations 

H~ are irreducible and pairwise inequivalent, e) is proved. 

Let A be a regular element in g. For x E V set 

Oo(x ,A)=[U]~  ~ ~(B(x,y)) ,  
yEll(A) 

where B is the Killing form of g and ~ ( A )  is the orbit of A ~ g under the adjoint 

representation of G in g. Since the centralizer of a semisimple regular element in 

a reductive group is connected, I )(A) is the orbit of A under G. 

THEOREM 1. The restriction of Qc(lnx,  A)  to U is a character of some 

representation of U. 
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PROOF. It is sufficient to check that for any irreducible representation H of U 

the scalar product (Q~( , A ) , T r l I ) u  Tr l I )u  is a natural number of zero. 

According to Proposition 2 we can take rI = II, for some A E u'. Let h ^ C u be a 

subordinate subalgebra for A, H ~ = exp h* and A be a corresponding character 

of H*. By definition I1, = Ind,U,(A). By Frobenius reciprocity one has 

( 0 ~ ( , A ) , T r I ] , )  = ( 0 ~ (  , A ) ,A)m = [H*]-'[UI-' ~ O~0n h , A ) .  A-' (h)  

= [H*]-~[U] -' ~-~, Q6( f ,A )~b ( -A ( f ) )  
feh 

= [H*I - ' [U] - '  y~a,A,E ,~, ~b[B(f, y ) -  Z(f)]. 

Since h * is a linear subspace and since B ( , y) - A ( ) is linear for any y E g, we 

have 

1 
( O a ( , A ) , T r I I )  = ~ [X*]. 

Here  X* CI I (A)  is an algebraic variety consisting of those y E II(A) for which 

the restriction of B ( , y )  to h* coincides with A. 

Since A is assumed fixed we shall omit index A in our notation. 

To prove that [U] divides IX] we shall use the following general result whose 

proof was given to us by P. Deligne. 

PROPOSITION 3 (P. Deligne). Let Z be an algebraic variety defined over a 

finite field k. Denote by Z the corresponding variety over the algebraic closure k of 
k. Suppose that there exists a partition of ,~ into a disjoined union of finite number 

of constructive sets: 2 = U~ z.~ such that for every k, 1 <= k <- N Zk is open in 
U ~ k  Z~ and suppose further that for every i there exist morphisms [, : Z~ ~ ~ of Z~ 

to algebraic varieties ~'~ such that for any i and any y E ~', the fiber f / ( y  ) is either 

empty or isomorphic to the fixed affine space A". Then [Z ] .  [k ]-" is an integer. 

The proof is in the Appendix. 

It follows now from Proposition 3 that to prove Theorem 1 it is sufficient to 

check that X satisfies the assumptions of Proposition 3 with n = dim U. 

To begin with let us describe the partition of ,~. Since we are working now 

over an algebraically closed field, the regular element A is split and belongs to a 

split torus 3- of Lie algebra g. We can assume that this torus 8- corresponds to a 

torus T in G, which normalizes U. Let W be the Weyl group of G. For w @ W 
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let us denote  by Uw (resp. U+~) the subgroup of U generated by the root 

subgroups U,, such that a is positive and a w is negative (resp. a ~ is positive). It 

is well known that for every w E W, U+wUT~ = U-~ U+~ = U. By Bruhat decomposi-  

tion the group G is the finite disjoint union G = Uw~wTUT~wU of constructive 

subvarieties G~ = TUT~wU. For w E W set I I ~ ( A ) = A d G ~ ( A )  and Xw = 

X n llw (A). By definition Ilw = A d ( U )  Ad w Ad U-~(A ). Since A is regular in 3- 

we have Ad U-~(A)= A +tt~,, where tt2 is the Lie algebra of Uw. Hence 

I I ~ ( A ) = A d U ( A  ~ + A d w ( u ; ) ) .  Since for all w E U, j r E J ,  u El l ,  one has 

B ( A d  u(jr), u) = 0, it follows that X~ is isomorphic to the set of pairs (u E U, w E 

Uw) such that for every f E h  one has B ( A d u  A d w ( w ) , j r ) =  a(f). 
Let us remark now that the set of functionals on u of the form Ad w(u),  

w Et t ; ,  coincides (taking into account that t t=  u+~Gu;) with the set of those 

functionals /, on tt whose restriction to (Ad w ) ( u ; ) C u  is zero. 

Therefore  Theorem 1 follows directly from a general Proposition below. To 

state it we need some notation. Let U be a connected unipotent reduced Lie 

group over  k with Lie algebra u, L, H C U be connected subgroups with Lie 

algebras ~ and h, a be a linear functional on h fixed by Ad H. Let us denote  by 

tt' the space of functionals on u and by X Cu '  x U the subvariety of pairs (/z, u) 

such that p, lee = 0  and Adu(/x) lh  = a. 

PRoPOSmOr~ The variety X satisfies assumptions of Proposition 3 with n = 

dim U. 

PROOF. Consider the action of L x H on U given by 

(z, h ) ( u )  = I 'uh. 

It follows from Rosenlicht 's  Theorem that there exists a finite L • H invariant 

partition U = tO U, into constructive subsets /3, such that the quotient space 

q~: U~--+~ of U~ with respect to the action of L x H  exists. Take  X~ = 

X fl ( u ' x  U~) and define morphism f~: X~ ~ Y~ by jr: (w',  u) = ~,(u). 

Let us now compute  the fibers of jr,. Denote  by .~ lCU,  the subspace of 

functionals whose restrictions to ~ are zeros and by h~ Cu '  the affine subspace 

of functionals which are equal to )t on h. Let l =  dim L, h = dim H. Then 

dimLP ~ = n - l and d imh~  = n -  h. For y E Y, let us denote  by 4b the fiber 

~ 7 ' ( y ) C  U,. Let u E tk,. It is clear that ~y is isomorphic to the quotient space 

uLu -~ M H \ L  • H. Since L and H are connected unipotent groups, the quotient 

space 4~ is isomorphic to an affine space of dimension l +  h -  m, where 

m = dim uLu- '  n H, and projection rr: L • H ~  4~ admits a regular section 

3' : tO~ --+ L • H. Set t/, = Ad u ( . ~ )  n h ~. It is clear that either tO = O or tO is 
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isomorphic to intersection A d u ( , ~ •  I and hence is an affine space of 

dimension 

(n - l ) + ( n -  h )+  m - n = n + m - l -  h. 

The map a :  ~ • d~y ~ t t ' x  U given by a (0 ,  ~0) = (y(~o)0, ~o) gives rise to an 

isomorphism a : ~  • ~b ~ f-~(Y1). Theorem 1 is proved. 

REMAR~:. T . A .  Springer, in one of his talks at the time of his visit to Moscow, 

informed us that he can prove that the function O~ (A, x)  depends (for unipotent 

x E V C G)  only on the centralizer of regular element A, that is, it depends only 

on the maximal torus containing it. The discussion which follows will not use this 

result. However,  it permits us to simplify the notation and therefore we shall 

assume the above result of T. A. Springer and write O c ( T , x )  in place of 

O ~ ( A , x ) .  See the proof in [6]. 

As before, let G be a connected reductive k-group, T C G be a maximal 

k-torus and 0: T---~C* be a character. Using these data, we shall now define the 

class function OG(0; T; g) on G. Our definition is inductive. We shall assume 

that O ,  is defined for all proper  reductive subgroups H C G. For g E G let 

g = su be its Jordan splitting, s semisimple, u nilpotent and s commutes with u. 

I. I f s  is not conjugate in G toan  element of T, t h e n w e s e t  Oc(0 ;  T ; g ) = 0 .  

II. If s is conjugate in G to an element of T, we assume (as we can) that 

s E T .  

a) If s E C(G),  we set O~(0;  T ; g ) =  O(s)O~(T;u) .  

b) If s ~  C(G),  we set 

O~(O; T ; g ) = ( - 1 ) ~ ' s ' ] Z ~  ~ Oz , , . , ( xTx- ' ,u )O(x- ' sx ) .  
x E G  

X - I s x E T  

Here Z~ is the connected component  of the centralizer Z(s )  of s in G, 

a = t r (G)-~r(Z~ tr is the split semisimple rank. 

MAIN THEOREM. For any pair (0, I)  the class function QG(O; T; ) is a virtual 

character of G. 

The proof of this result is rather long. To begin it we shall prove several simple 

lemmas about structures. Let cr = (C~) be a partially ordered set with maximal 

element Co. 

DEFINITION. The M6bius function is a function /z on ~ such that /z(Co)= 1 

and for any C E c~, C /  Co, Ec,~,c,~_c#(C')=O 
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It is clear that/z is uniquely determined by these properties and that its range 

are integers. 

Let us say that ~r is a set with intersections if for any pair C~, C: E ~r the 

partially ordered set qg(C~, C2) = {C ~ ~ [C =< C~, C =< C2} contains a maximal 

element. It will be denoted C~ N C:. 

LEMMA 3. Let cr be a finite partially ordered set with intersections. Then for 
any C ~ c~, C~ Co and any C, <-_ C one has Ec,nc:c,#(C') = O. 

PROOF. Denote by ~ C ~  the subset of D E ~  such that C~_-<D-<C and 

define function A on @ by the system of equations 

A ( C , ) = I ; V D E @ # C , ,  E A(D')=O. 
D ' ~  
D'<=D 

Then for any function a on ~ the following equality holds: 

E A(D) E a(C' ) (1)  E a(C') ~'~ A(D)(2)  
D E ~  C ' E ~  C ' E ~  D E ~  

C ' ~ D  D ~ C '  

=(C') 
C,E(~ 

A(D) =(3) 
D E ~  C'Eqg 

D<=C'NC C ' O C = C I  

~(c') 

((1) is evident; (2) follows from the definition of intersection; (3) is implied by the 

fact that for C' ->_ C one has C' N C E ~).  In particular 

~(C')  = ~ A(D) ~ ~(C ' )=O 
C ' n C = C i  C ' ~ D  

since D _-< C~  Co. Lemma 3 is proved. 

Let again G be a connected reductive group and T C G  be a maximal 

k-subtorus of G. 

DEFINITION. Let us say that a connected reductive k-subgroup H C G is 

distinguished if there exists a subgroup To C T such that H = Z~ It is clear 

t h a t / / D  T and H is generated by T and those root subgroups of G with respect 

to T whose restriction to To is 1. Let us denote by ~ the set of distinguished 

subgroups of G partially ordered by inclusion. ~ is a set with intersections: if 

H, = Z~ = Z~(T2), then H, fq H2 = Z~(T~. I"2). Denote by/z the M6bius 

function of ~ and consider the function K~(O; T; ) on G given by 

Ko(O; T)= ~'~,_,~ ( -  ly"m#(H)Ind~ T; ), 



280 D. KAZHDAN Israel J. Math. 

where Ind,~ is the operation of induction of class functions from H to G. 

PROPOSITION 4. The support of the functions Kc(O; T; ) is contained in 

C(G)  • V. (Recall that C(G)  is the center of G and V c G is the set of unipotent 

elements.) 

PROOF. Let g = su, s is semisimple and u unipotent, su = us. Let us denote 

by s~ (a E A, A a set of indices) the set of elements of T which are conjugate to s 

in G. Let us denote further by Lo the centralizer of s~ in G and by F~ the set of 

elements of T which are conjugate to so in H. 

Set I .  = Ind~Q.(0;  T)(g).  By the definition of induction one has 

I ,  = [HI-' E O.(O; T; g*) = [H l ' ~', O,~(o; T; s'u *) 
x E G  x E G  

(where, as usual, O . (0 ;  T; h) is taken to be equal to zero if h ~  H). If s'u ~ E H 

then s XE H. Hence 

I .  = [H]- '  ~ O . (0 ;  T; s 'u ' ) .  
x C G  
s X ~ H  

It follows from the definition of Q.(O; T) that QH(O; T; s ' u ' ) =  0 if s" cannot 

be conjugate to an element of T by an element of H. Therefore 

I.=[H]-' ~ IsTl . lr~ l - '  ~, O.(O;T;s~u') 
c t ~ A  x • G  

s x = s ~  

-- E tr~I-'-tLoAHf-' E O,-,(O; T; sou'). 
a ~ : A  x 6 G  

s x = s a  

By definition (where [M] denotes the number of rational points of M) 

O.(0;  T;s~u ~) 
x ~ G  

$x=s~ 

= ( -  1)~(n'-~((L~nx~)l(L~ n H)~ -' E E O(L~n")~ hTh-' ,  u')O(s~) 
x E G  h E H  
�9 h s =s~ s a l T  

L o A H  I uX 
= ( -  1) ~(m-~((~~ ~Ht~L. NH)Ol E Q(.nL~)"(T, )O(s.). 

sX=sfl 

Therefore 

O(nnLo~~ U')O(So). 
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Hence 

KG(O, T)(g)= ~ ( -  l y (m/~(H) I .  
HE3"# 

~', O(s~) ~ ~ /z(H) (-1)~((L"~m~ 
,.EA xEG HE:~" l ( L a  (-~ / ' / )0  I 

Q (L~nH)~ T~ U x ) 

E O(s~) E E ( -  lf(W) ,,cA , ~ o  w ~ L . .  IH'I Ow(T'u*) ~ e  I~(H'). 
s x =s~ (HC~L~)~ ' 

If sff C(G) then L , / G  and Ko(O; T ; g ) = 0  by Lemma 3. Proposition 4 is 

thus proved. 

PROPOSITION 5. For all unipotent elements u E G the quotient 

IZc.(u)l '. I C(G)I. Ko(O; T; u) 

lies in the ring Z[1/q]. 

PROOF. We assume the assertion is proved for all connected reductive 

subgroups of dimension < dim G. 

If u C H, then, by definition, 

O . ( T , u ) = I U n H I - '  ~ ~(B(y,w))=tUnHI-'ITI-' ~ ~(B(A h',w)) 
yEll(A) h ~ H  

=IUnHI-'ITI-' ~ (t~oB)(A, wh), 
hEH  

where w = In u. Let us denote by (@ oB) . (A , - )  the function on g given by 

Then 

(qJ o B)H(A, y) = 

$(B(A,y)) for y E H  

0 for y E H. 

Ind~O.(T)(u) = I H f3 U I-' l TI-' ~ (@ oB)H(A, w ~) 
xEG 

= IZo(u) l  • ( O ~  
I U n H l  :~o,.~,o,~ I T n Z ~ ( u ' ) l  " 

Hence 

if(H) (00B)H(A, w ~) 
Kc.(O;T;u)=lZo(u)l ~ ( - l Y ' m l u n u  I 

2 f Tnz (u,)l -I • 
7EZG(u)\GIT 



282 D. K A Z H D A N  Israel J. Math. 

x E ( -  1)"(m/z(H) 
. ~ .  i U f q H i  (~OB)H(A,w' )  

=IZo(u)r ITnZ (u )l -' ~ 

= Z~(T M Zc(u Since u ~ Let us set //~ o ~ ) ) .  condition E H is equivalent to 

H D H .  we have 

Ko(O;T;u) ' lZo(u) l  '=  E IC(G)I I , , ,oB)(A,w ~) 
,~z,~(,)\o/r I C(H,)I " 

x E (-1)~(mg(H) 
I u n u l  

H D H v  

To conclude the proof of Proposition 5 we shall prove 

LEMMA 4. Let Ho C G be a distinguished subgroup and To C T be its center. 

Then 

I C(G)[  ~'~ [ H fq U [-'( - 1)~(m/x (H) 
H>Ho 

is divisible by I Tol in the ring Z[q-']. 

The proof of Lemma 4 is rather long and will be given in a number of steps. 

The main step is Proposition 6 having independent interest. 

Let ~ = {~,} be the set of classes of k-parabolic subgroups in G and let us fix 

a representative P, E ~,. For any k-parabolic subgroup P of G let s(P) denote 

its corank, that is, the split semisimple rank of its Levy subgroup. Set X, = P~\G 

and denote by X'~ C X the subvariety of those points x ~ X~ whose stabilizer in To 

is the center C(G) of G. 

LEMMA 5. Let x E X~ and let T~ be the stabilizer of x in T. Then Tx is the center 

of some distinguished subgroup. 

PROOF. Let Px CG be the stabilizer of x in G. Then Px is a parabolic 

subgroup and there exists a maximal torus T' of G, which contains T~ and is 

contained in P~. Consider the centralizer Hx---Zo(T~) of Tx in G. Then Hx 

contains T and T'. Hence C(Hx)CTM T'= T~ whence the assertion. 

PROPOSITION 6. The following equality holds: 

t L ( H ) ( - 1 ) r  ( -  1)"")1 x',/. 
H > H  o i 
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PROOF. For every distinguished subgroup H > H0 let us denote by TH C T its 

center and by X,.. C X~ the subvariety of fixed points of T.. Lemma 5 implies 

immediately the equality I X'~t = E.>.,, Iz (H) I X~.. I- Hence 

E (- lY'P"IX:I = E ~ ( H ) E ( - 1 ) ' ( e ) I X ~ . - / .  
I H > b t  0 i 

To conclude the proof of our Proposition it is sufficient to check the validity of 

the following equality: 

( -  1)~'~'IX~., I = ( -  1)~'m. I U N H I. 
i 

In the case when 7". contains an element t such that Z~( t )=  H, our equality 

turns (by Lemma 5) into the well-known formula for the character of the 

Steinberg representation of the G. In the general case it should follow along the 

same lines and would result in Proposition 6. 

Let us denote by T',', the connected component of T,, and by N the quotient 

N = To/T',~,. It is known that there exists a polynomial a ( t ) E Z [ t ]  such that 

I T~(Fq') I = a(q').  Let us denote by N(r) the order of N(Fq.). Analogously let us 

denote by C(t) such a polynomial that C(q ' )=  I C"(G)(F~.) I and also let us set 

N ' ( r )=  C(G)/C"(G)(Fq.).  It follows from Lang's Theorem (cf. [4]) that 

] T,,(Fq.)I = N(r ) . a (q ' ) .  Let us put further I (H)  = dim(U fq H) and 

P.,,(t)= ~ ( - l )~ ' " ' l~ (H) t" ' .  
H > H  o 

LEMMA 6. The quotient b(t)%fP.,,(t) �9 C(t) /a( t )  is a polynomial. Moreover 
b(q r) is an integer and N(r)/N'(r)  divides b(q'). 

PROOF. Proposition 6 implies that P. . (g ' )  = E, ( -  1)~',~[ X'~(F,.)I. Since T0 

acts on X', fixed-point-free, it follows that I X'~(Fq.)I is divisible by I T,,(Fq.)I = 

N(r)a(q') .  Therefore the rational function b(t) takes integer values at points 

t = q'. Hence b(t) is a polynomial, as asserted. 

Let us go now to the study of N(r). The Frobenius automorphism F acts on 

IV = N(Fq) and N(r) is the number of fixed points of F '  in N. Since/V is a finite 

group there exists a natural number n such that F" acts trivially on/~. Hence the 

number of fixed points of F" '- '  is the number of fixed points of F ', which is 

equal to the number of fixed points of F. Hence N(nr - 1) = N(1). Analogously 

N'(rn - 1)= N'(1). 

We return now to the proof of Proposition 5. We should verify divisibility of 

P.,,(q-') by J T,,I = N(1)a(q). Since a(q- ')  = +-a(q)q -~mr,,, C(q-')  = 
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+- C(q). q-d~"Ct~, it is sufficient to check that the value of N(1)- '  �9 N'(1) .  b(t) in 

t = q ~ falls into Z[q-1]. Note first that the coefficients of N(1) -1. N'(1) .  b(t) are 

rational. Let d be the least common multiple of their denominators. Represent d 

in the form d = p " �9 d', where (p, d ')  = 1, p = char k. Let I be a natural number 

such that ql" _ 1 is divisible by d'.  Then 

N'(1)b(q"-')/N(1) = N'(ln - 1)b(q"-')/N(ln - 1) 

is an integer (by Lemma 6). Therefore  

N'(1)b(q-')/N(1) = N'(1)b(q"-')/N(1)+ N ' ( 1 ) [ b ( q - ' ) -  b(q i , .  q-')]/N(1). 

Now the choice of l guarantees that N'(1) �9 b(q-~)/N(1) E Z[q-l]. Thus Lemma 4 

and, therefore, Proposition 5 are proved. 

To complete the proof of the Main Theorem we shall use the following easy 

result: 

LEMMA 7. Let M be a p-group, f (m ), m E M, be a character of M and l be an 

integer relatively prime to p. If values of the class [unction l -~ . f (m ) are algebraic 

integers then I-tf  is a character of M. 

The proof follows immediately from the fact that the index of the subgroup of 

virtual characters in the group of integral class functions is of the form pN. 

PROOF OF THE MAIN THEOREM. Let us consider the function Kc(0, T) on G. 

By the induction hypothesis and by Theorem ! the restriction of this function to 

U is a virtual character. By Proposition 4 the support of KG(0, T) consists of 

unipotent elements. We shall now prove that K~ (0, T)  is a virtual character of G. 

By Brauer 's  Theorem it is sufficient to prove that the restriction of Kc(O, T) to 

subgroups of G of the form Gs • G,, where G~ consists of semisimple elements 

and G. consists of unipotent elements, is a virtual character. 

Since the support of the restriction of K~(O, T) to Gs • G. is contained in G,, 

i_Jc • ,r G H .  K~(O, T))I~ o. By Proposition 5 the that restriction is equal to nuts, "~t ~l 

restriction of [G~] -~. K~(O, T) to G, is integer-valued. Since [Gsl is relatively 

prime to I Gu ], it follows from Lemma 9 that this restriction is a virtual character. 

Hence K~ (0, T) is a virtual character of G. 

It follows now from the definition of K~(O, T) and from the induction 

assumption that Q~(O, T) is a virtual character of G. The Main Theorem is 

proved. 

THEOREM 3. QG(O, T) coincides with the function (-1)"tc~-"tr~R~.~ intro- 

duced by Deligne and Lusztig (cf. [2]). 
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PROOF. We shall assume that the theorem is proved for all groups of 

dimension < d i m G .  Then it follows immediately that Q~(0, T ) -  

( -  1)"(a~-"tr~R ~ is supported by the set of unipotent elements. It follows from 

results of T. A. Springer and Deligne-Lusztig (cf. [2] and [6]) that 

-I~'~G~-"~r~R ~ r<=41Wrt.IV[, ~[ O~(O, T ) - (  j ~,o 

where V is the set of unipotent elements of G. 

On the other hand, the fact that Qa (0, T) and R g,~ are virtual characters of G 

implies that the sum above should be divisible by ] G ]. So it is zero, as asserted. 

REMARK. I think that Assumption (*) made in the beginning about the 

existence of In for unipotent elements is inessential. E. Gutkin proved that any 

irreducible representation of the maximal unipotent subgroup U of GL (n, F,) is 

induced from the one-dimensional representation of the group of Fq-points of 

the appropriate connected algebraic subgroup of U. If an analogous result will be 

proved for the maximal unipotent subgroup of an arbitrary reductive group, 

Assumption (*) would become superfluous, and in the case of good characteris- 

tics the proof would need only minor corrections. 

APPENDIX 

PROOF OF PROPOSITION 3. We will prove the proposition only in the case 

when (**) Z~ is open in I,]i~, Z, for all. It is easy to see that it is enough for our 

purposes. 

Let H~(2,Qe) be the &ale cohomology of 2 with compact supports ([4]), 

tr:,~--~ 2 the Frobenius morphism over k and ~j the corresponding linear 

homomorphisms q~j:H{(Z, Qe)--~H{(Z,Q~). It is well known ([1]) that the 

eigenvalues of q~j are algebraic integers, and Tr q~j E Z. The Lefschetz formula 

= Ej=o ( -  1)JTrCj. So Proposition 3 immediately follows ([4]) tells us that [Z] 2d~m2 

from 

PROPOSITION 3'. Under the assumption of Proposition 3 and (**) the eigen- 
values of q~j are divisible by q ~. 

PROOF OF PROPOSmON 3'. Let K be a finite extention of k. It is clear that 

Proposition 3' is true for Z iff it is true for Z@sp~ck Spec K. So we can suppose 

that the decomposition ,~ = U 2,~ and the morphisms f~:,~ ~ I7"~ are defined 

over k. 

Firstly we prove that the eigenvalues of the action tr on H~(Z,,Q~) are 
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divisible by q". For this we consider the Leray spectral sequence corresponding 

to morphism/~: 2~ ~ ~'~. 

Then we obtain E~ 'q~ H~§ Qe) where E2 p'q= H~(Y, R~[(~e). We know 

([3]) that a) Rqf commutes with the base change, and b) H{(A") = 0 i f j ~  2n and 

H~"(A") = Qe(n). So we see that H{(2_.,,Qe)= H'c-2"(Y,,.R2"~Qe) and for every 

closed point y E Y~ the action of the Frobenius o-~ on the stalk (R~"~Q~)y ([1]) is 

divisible by [k~]". It follows now from ([3]) that the eigenvalues of ~0 j on 

H~' (Z~, Q~) are divisible by q". 

Let X, be (..Jj~ ~. It follows from (**) that X~ is closed in Z, and X, = Z. We 

will prove by induction that the eigenvalues of the action of Frobenius on HJ(.~,) 

are divisible by q". 

If i is big enough, X~ = O and there is nothing to prove so suppose that our 

statement is true for X~ and prove it for X~_,. We have an exact sequence ([3]): 

H~ (2,_1, Qe)---~ H~ (..~,--1, Q,)--~ H~ (..~,, Qe)--~ Hi+I(Z,_I, Q, )  

and all maps in it commute with Frobenius. So our statement follows from the 

fact that Proposition 3' is true for X, and Z~ j. Proposition 3' and, as follows, 

Proposition 3 are proved. 
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